This PSU could, theoretically, supply up to 8A for short periods, with the output sagging to ±14V at that current, but it will never be asked to supply anywhere near that much in the intended application and I would rather not push it to the limit in case I break something. It's a capacitance multiplier. These work by amplifying an RC filter, rather than a voltage reference as a normal regulator does. It has certain benefits over a regulator, including lower power dissipation and smoother output ripple (high frequencies are attenuated more than low frequencies). It's improved compared to the usual design that is seen (emitter-follower buffered RC filter) with increased ripple rejection and/or smaller RC filter capacitor due to high input impedance, and lower dropout voltage due to use of pass transistors of opposite polarity to normal (limited only by RDS(on) multiplied by output current for MOSFETs, or VCE(sat) for BJTs). The cost is increased complexity, with six transistors ...